Skip to main content

Micro-RNA Role in Alzheimer's Disease

Proteins are the molecular machines of the cell. They transport materials, cleave products or transmit signals -- and for a long time, they have been a main focus of attention in molecular biology research. In the last two decades, however, another class of critically important molecules has emerged: small RNA molecules, including micro-RNAs. It is now well established that micro-RNAs play a key role in the regulation of cell function."A micro-RNA regulates the production of an estimated 300-400 proteins.

This class of molecules can be regarded as a switch that coordinates the transition of cells from one state to another," explains Prof. Dr. André Fischer, scientist at the German Center for Neurodegenerative Diseases (DZNE) and Speaker of the DZNE site Göttingen. He and his team have identified a micro-RNA that regulates the learning processes and probably plays a central role in Alzheimer's disease. The researchers have shown that there is too much of a micro-RNA called "miRNA 34c" in mouse models of Alzheimer's disease, and decreasing the level of miRNA 34c in these mice can restore their learning ability. The scientists have identified a new target molecule that might be important for diagnosis and treatment of Alzheimer's disease. The studies were carried out in collaboration with scientists at the European Neuroscience Institute Göttingen, the Göttingen University, the DZNE site in Munich and researchers from Switzerland, USA and Brazil.

miRNA 34c was identified using a highly complex method called "massive parallel sequencing." With this technology, Fischer and his colleagues captured the complete RNA composition in the hippocampus -- the learning region of the brain -- and compared this with the RNA of the entire brain. They showed that miRNA 34c is enriched in the hippocampus, especially in during the time window of a few hours after a learning phase. "We suspect that the function of micro-RNA 34c is to switch off a whole range of gene products that are turned on in the learning process," Fischer said. Too much miRNA 34c would then lead to a blockade of learning -- which is exactly what was shown in subsequent experiments.

In old mice, which do not learn as easily as their younger counterparts, there was indeed too much miRNA 34c. The miRNA-34c level was also elevated in mice that are used as specific research models of Alzheimer's disease. These mice carry a genetic mutation that can cause Alzheimer's in humans and show disturbances of memory function. Moreover, miRNA 34c seems to not only play a role in mice. Fischer and his colleagues showed these levels are also elevated in the brains of Alzheimer's patients.

In further mouse experiments, the researchers showed that miRNA 34c is actually causally involved in the pathogenesis of Alzheimer's disease and memory disorders. An artificial increase of miRNA-34c level in normal mice results in memory impairment in the animals. Secondly, as Fischer and his colleagues have shown, lowering miRNA-34c levels can restore learning ability in mouse models of Alzheimer's disease and in older mice. "Neurodegenerative diseases like Alzheimer's are associated with many factors. We hope that with the identification of micro-RNA 34c, we have found an important mediator of pathogenesis," says Fischer. "Micro-RNA 34c would then be a good candidate for the development of drugs against Alzheimer's."

Athanasios Zovoilis, Hope Y Agbemenyah, Roberto C Agis-Balboa, Roman M Stilling,Dieter Edbauer, Pooja Rao, Laurent Farinelli, Ivanna Delalle, Andrea Schmitt, Peter Falkai, Sanaz Bahari-Javan, Susanne Burkhardt, Farahnaz Sananbenesi1 & Andre Fischer. Micro-RNA-34C is a novel target to treat dementias. EMBO Journal, 2011.327

Comments

Popular posts from this blog

J147 Reverses Memory Deficits And Slows Alzheimer's In Mice

Source:  Salk Institute A drug developed by scientists at the Salk Institute for Biological Studies, known as J147, reverses memory deficits and slows Alzheimer's disease in aged mice following short-term treatment. The findings, published May 14 in the journal Alzheimer's Research and Therapy, may pave the way to a new treatment for Alzheimer's disease in humans.  "J147 is an exciting new compound because it really has strong potential to be an Alzheimer's disease therapeutic by slowing disease progression and reversing memory deficits following short-term treatment," says lead study author Marguerite Prior, a research associate in Salk's Cellular Neurobiology Laboratory. Despite years of research, there are no disease-modifying drugs for Alzheimer's. Current FDA-approved medications, including Aricept, Razadyne and Exelon, offer only fleeting short-term benefits for Alzheimer's patients, but they do nothing to slow the steady, irr

Neuronal Switch to Prevent Neurodegenerative Diseases

Scientists at Northwestern University report a surprising discovery that offers a possible new route for the treatment of neurodegenerative diseases. In a study of the transparent roundworm C. elegans, they found that a genetic switch in master neurons inhibits the proper functioning of protective cell stress responses, leading to the accumulation of misfolded and damaged proteins. Neurodegenerative diseases, ranging from Huntington's and Parkinson's to amyotrophic lateral sclerosis and Alzheimer's, are believed to stem from early events that lead to an accumulation of damaged proteins in cells. Yet all animals, including humans, have an ancient and very powerful mechanism for detecting and responding to such damage, known as the heat shock response. "Why are these diseases so widespread if our cells have ways to detect and prevent damaged proteins from accumulating?" said Richard I. Morimoto, who led the research together with postdoctoral colleague Veena Prah

Gene Expression in the Mouse Brain Provides Insights

A new atlas of gene expression in the mouse brain provides insight into how genes work in the outer part of the brain called the cerebral cortex. In humans, the cerebral cortex is the largest part of the brain, and the region responsible for memory, sensory perception and language. Mice and people share 90 percent of their genes so the atlas, which is based on the study of normal mice, lays a foundation for future studies of mouse models for human diseases and, eventually, the development of treatments. Researchers from the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health, and from Oxford University in the United Kingdom, published a description of the new atlas in the Aug. 25, 2011, journal Neuron. The study describes the activity of more than 11,000 genes in the six layers of brain cells that make up the cerebral cortex. "This study shows the power of genomic technologies for making unexpected discoveries about the basic biology of lif