Skip to main content

New Way to Target Shape-Shifting Proteins

A molecule which can stop the formation of long protein strands, known as amyloid fibrils, that cause joint pain in kidney dialysis patients has been identified by researchers at the University of Leeds. The discovery could lead to new methods to identify drugs to prevent, treat or halt the progression of other conditions in which amyloid fibrils play a part, including Alzheimer's, Parkinson's and type II diabetes.
The research, funded by the Biotechnology and Biological Sciences Research Council and the Wellcome Trust, is published August 28 in Nature Chemical Biology.

The team -- from Leeds' Astbury Centre for Structural Molecular Biology and Faculty of Biological Sciences -- found that an antibiotic known as Rifamycin SV was able to prevent the protein β2microglobulin (β2m) from forming into fibrils. β2m is known to accumulate in renal dialysis patients and forms fibrils within the joints, causing extreme pain and arthritis.

By using a specialised analytical technique called ion mobility spectrometry-mass spectrometry (IMS-MS), the researchers were able to see at what stage of the process Rifamycin SV prevented amyloid fibril formation. They believe the technique could enable potential drugs to be identified for the many other proteins which form amyloid fibrils, linked to a wide range of human disorders.

"Traditional drug design for diseases like Alzheimer's is incredibly difficult because the proteins you're trying to target are changing shape and structure all the time," explains University of Leeds Professor of Structural Molecular Biology, Sheena Radford. "It's like trying to consistently pick out one bead of a particular shape from box of potentially millions of similar beads. This new technique allows us to see the shape of the protein as it changes, so we can more easily identify exactly which part we need to target."

In their normal, folded state, proteins are unable to link together to form long fibrillar assemblies, but if they unfold, they expose areas where they can bind to each other. Initially they form small groups of two, three or four proteins, and then these link into long strands, which twist together to form fibrils.

Most analytical techniques can only show the mass of the protein or its make-up in terms of amino acids, neither of which changes as the protein unfolds. Others are unable to look at individual molecules within complex mixtures. However, IMS-MS can measure the mass and shape of a protein, allowing researchers to watch the unfolding process and the aggregation into small groups and then assembly into the fibril and to find which of these species is able to bind a ligand and stop the assembly process.

In the research published August 28, researchers found that Rifamycin SV stopped the formation of protein fibrils by binding to an unfolded protein molecule with a particular shape, enabling for the first time, an unfolded protein of a particular shape to be identified as a target for the design of new inhibitors of fibril assembly.

"We're fortunate to be one of the few universities in the UK able to use IMS-MS to study amyloid fibril formation," says Professor of Biomolecular Mass Spectrometry, Alison Ashcroft, who specialises in this type of analysis. "Although fibrils take years to develop in the body, we are able to 'grow' them in hours in the lab. By using IMS-MS to help us map exactly how they are formed, we can better understand the mechanism by which it happens and -- we hope -- find ways to stop it."

Lucy A Woods, Geoffrey W Platt, Andrew L Hellewell, Eric W Hewitt, Steve W Homans, Alison E Ashcroft, Sheena E Radford. Ligand binding to distinct states diverts aggregation of an amyloid-forming protein. Nature Chemical Biology, 2011; DOI: 10.1038/nchembio.635

Source: University of Leeds, via EurekAlert.

Comments

Popular posts from this blog

Scientists Mapped Out a Neuroreceptor

For the first time, USC scientists have mapped out a neuroreceptor. This scientific breakthrough promises to revolutionize the engineering of drugs used to treat ailments such as Alzheimer's disease and schizophrenia. The team produced the world's first high-resolution images of the α7 (Alpha 7) receptor, a molecule responsible for transmitting signals between neurons -- particularly in regions of the brain believed to be associated with learning and memory. Using the image, scientists will be better equipped to design pharmaceuticals specifically to interact with the receptor, instead of blindly using a trial-and-error approach. "A lot of interest in this work will come from pharmaceutical companies," said corresponding author Lin Chen, professor of biological sciences and chemistry at the USC Dornsife College of Letters, Arts and Sciences. "They really have no clear picture of this. They don't know how or why [their drugs] work." The high-resolution...

Dystonia Medical Research Foundation Honors Two Warren Men for Promoting Awareness of Debilitating Disease

Jason Dunn and Mike Delise recently returned from the Children & Family Dystonia Symposium in Chicago, where they were presented with Star Awards. The Dystonia Medical Research Foundation (DMRF) recognized Dunn and Delise for their efforts to promote greater public awareness of dystonia, a neurological disease. "I think this is probably the only time in my life that I am speechless," says Dunn. "I wasn't expecting this award at all." "Bringing awareness and donations to the Dystonia Medical Research Foundation is the single most important thing we can do--this is how a cure will be found," says Delise. "The people who deserve this award are all the people who have dystonia who bring awareness every minute of their life. Jason is my hero and to be able to help your hero is a thrill for me." Dunn began exhibiting unusual postures and an awkward gait at age 6. While most children this age are mastering their abilities to run, jump, and so...