Skip to main content

Posts

Showing posts from September, 2011

Drug Delivery to the Brain for Alzheimer's

Source: Cornell University . Cornell University researchers may have solved a 100-year puzzle: How to safely open and close the blood-brain barrier so that therapies to treat Alzheimer's disease, multiple sclerosis and cancers of the central nervous system might effectively be delivered. The researchers found that adenosine, a molecule produced by the body, can modulate the entry of large molecules into the brain. For the first time, the researchers discovered that when adenosine receptors are activated on cells that comprise the blood-brain barrier, a gateway into the blood-brain barrier can be established. Although the study was done on mice, the researchers have also found adenosine receptors on these same cells in humans. They also discovered that an existing FDA-approved drug called Lexiscan, an adenosine-based drug used in heart imaging in very ill patients, can also briefly open the gateway across the blood-brain barrier. The blood-brain bar...

Micro-RNA Role in Alzheimer's Disease

Source: Helmholtz Association of German Research Centres . Proteins are the molecular machines of the cell. They transport materials, cleave products or transmit signals -- and for a long time, they have been a main focus of attention in molecular biology research. In the last two decades, however, another class of critically important molecules has emerged: small RNA molecules, including micro-RNAs. It is now well established that micro-RNAs play a key role in the regulation of cell function."A micro-RNA regulates the production of an estimated 300-400 proteins. This class of molecules can be regarded as a switch that coordinates the transition of cells from one state to another," explains Prof. Dr. André Fischer, scientist at the German Center for Neurodegenerative Diseases (DZNE) and Speaker of the DZNE site Göttingen. He and his team have identified a micro-RNA that regulates the learning processes and probably plays a central role in Alzheimer's...

Human Brain Doesn't Stop Developing at Adolescence

Source: University of Alberta Faculty of Medicine & Dentistry. The human brain doesn't stop developing at adolescence, but continues well into our 20s, demonstrates recent research from the Faculty of Medicine & Dentistry at the University of Alberta.  It has been a long-held belief in medical communities that the human brain stopped developing in adolescence. But now there is evidence that this is in fact not the case, thanks to medical research conducted in the Department of Biomedical Engineering by researcher Christian Beaulieu, an Alberta Innovates -- Health Solutions scientist, and by his PhD student at the time, Catherine Lebel. Lebel recently moved to the United States to work at UCLA, where she is a post-doctoral fellow working with an expert in brain-imaging research. "This is the first long-range study, using a type of imaging that looks at brain wiring, to show that in the white matter there are still structural changes happening during young adult...

Blocking Transport Pathway to Prevent Development of Alzheimer's

Blocking a transport pathway through the brain cells offers new prospects to prevent the development of Alzheimer's. Wim Annaert and colleagues of VIB and K.U. Leuven discovered that two main agents involved in the inception of Alzheimer's disease, the amyloid beta precursor protein (APP) and the beta secretase enzyme (BACE1), follow a different path through the brain cells to meet up. It is during the eventual meeting between protein and enzyme that the basis is laid for the development of the disease. The results of the study were published in the Proceedings of the National Academy of Sciences. Wim Annaert suggests that "closing off or rerouting the path which beta secretase follows to get to APP may perhaps be used to inhibit the rise of the disease. However, a great deal of additional research will be necessary to confirm whether this discovery can effectively lead to a drug." APP (red) and BACE1 (pink) follow distinct routes to the early endosome. Blocking s...

Scientists Mapped Out a Neuroreceptor

For the first time, USC scientists have mapped out a neuroreceptor. This scientific breakthrough promises to revolutionize the engineering of drugs used to treat ailments such as Alzheimer's disease and schizophrenia. The team produced the world's first high-resolution images of the α7 (Alpha 7) receptor, a molecule responsible for transmitting signals between neurons -- particularly in regions of the brain believed to be associated with learning and memory. Using the image, scientists will be better equipped to design pharmaceuticals specifically to interact with the receptor, instead of blindly using a trial-and-error approach. "A lot of interest in this work will come from pharmaceutical companies," said corresponding author Lin Chen, professor of biological sciences and chemistry at the USC Dornsife College of Letters, Arts and Sciences. "They really have no clear picture of this. They don't know how or why [their drugs] work." The high-resolution...